Performance
Class Matrix
import random
class Matrix(list):
@classmethod
def zeros(cls, shape):
n_rows, n_cols = shape
return cls([[0] * n_cols for i in range(n_rows)])
@classmethod
def random(cls, shape):
M, (n_rows, n_cols) = cls(), shape
for i in range(n_rows):
M.append([random.randint(-255, 255)
for j in range(n_cols)])
return M
def transpose(self):
n_rows, n_cols = self.shape
return self.__class__(zip(*self))
@property
def shape(self):
return ((0, 0) if not self else
(len(self), len(self[0])))
def matrix_product(X, Y):
"""Computes the matrix product of X and Y.
>>> X = Matrix([[1], [2], [3]])
>>> Y = Matrix([[4, 5, 6]])
>>> matrix_product(X, Y)
[[4, 5, 6], [8, 10, 12], [12, 15, 18]]
>>> matrix_product(Y, X)
[[32]]
"""
n_xrows, n_xcols = X.shape
n_yrows, n_ycols = Y.shape
# верим, что с размерностями всё хорошо
Z = Matrix.zeros((n_xrows, n_ycols))
for i in range(n_xrows):
for j in range(n_xcols):
for k in range(n_ycols):
Z[i][k] += X[i][j] * Y[j][k]
return Z
%doctest_mode
Exception reporting mode: Plain
Doctest mode is: ON
>>> X = Matrix([[1], [2], [3]])
>>> Y = Matrix([[4, 5, 6]])
>>> matrix_product(X, Y)
[[4, 5, 6], [8, 10, 12], [12, 15, 18]]
>>> matrix_product(Y, X)
[[32]]
[[32]]
%doctest_mode
Exception reporting mode: Context
Doctest mode is: OFF
Runtime measurement
Everything seems to work, but how fast? Use the magic timeit
command to check.
%%timeit shape = 64, 64; X = Matrix.random(shape); Y = Matrix.random(shape)
matrix_product(X, Y)
86.6 ms ± 1.52 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Total: Multiplying two 64x64 matrices takes near 0.1 seconds. Y U SO SLOW?
We define an auxiliary function bench
, which generates random matrices of the specified size, and then n_iter
times multiplies them in a loop.
def bench(shape=(64, 64), n_iter=16):
X = Matrix.random(shape)
Y = Matrix.random(shape)
for iter in range(n_iter):
matrix_product(X, Y)
Let's try to look at it more closely with the help of the line_profiler
module.
#!pip install line_profiler
%load_ext line_profiler
%lprun -f matrix_product bench()
Note that the operation list .__ getitem__
is not free. Swap the for
loops so that the code does less index lookups.
def matrix_product(X, Y):
n_xrows, n_xcols = X.shape
n_yrows, n_ycols = Y.shape
Z = Matrix.zeros((n_xrows, n_ycols))
for i in range(n_xrows):
Xi = X[i]
for k in range(n_ycols):
acc = 0
for j in range(n_xcols):
acc += Xi[j] * Y[j][k]
Z[i][k] = acc
return Z
%lprun -f matrix_product bench()
2 seconds faster, but still too slow:> 30% of the time goes exclusively to iteration! Fix it.
def matrix_product(X, Y):
n_xrows, n_xcols = X.shape
n_yrows, n_ycols = Y.shape
Z = Matrix.zeros((n_xrows, n_ycols))
for i in range(n_xrows):
Xi, Zi = X[i], Z[i]
for k in range(n_ycols):
Zi[k] = sum(Xi[j] * Y[j][k] for j in range(n_xcols))
return Z
%lprun -f matrix_product bench()
The matrix_product functions are pretty prettier. But, it seems, this is not the limit. Let’s try again to remove unnecessary index calls from the innermost cycle.
def matrix_product(X, Y):
n_xrows, n_xcols = X.shape
n_yrows, n_ycols = Y.shape
Z = Matrix.zeros((n_xrows, n_ycols))
Yt = Y.transpose() # <--
for i, (Xi, Zi) in enumerate(zip(X, Z)):
for k, Ytk in enumerate(Yt):
Zi[k] = sum(Xi[j] * Ytk[j] for j in range(n_xcols))
return Z
Numba
Numba does not work with inline lists. Rewrite the matrix_product
function using ndarray.
import numba
import numpy as np
@numba.jit
def jit_matrix_product(X, Y):
n_xrows, n_xcols = X.shape
n_yrows, n_ycols = Y.shape
Z = np.zeros((n_xrows, n_ycols), dtype=X.dtype)
for i in range(n_xrows):
for k in range(n_ycols):
for j in range(n_xcols):
Z[i, k] += X[i, j] * Y[j, k]
return Z
Let's see what happened.
shape = 64, 64
X = np.random.randint(-255, 255, shape)
Y = np.random.randint(-255, 255, shape)
%timeit -n100 jit_matrix_product(X, Y)
The slowest run took 21.46 times longer than the fastest. This could mean that an intermediate result is being cached.
495 µs ± 900 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Cython
%load_ext cython
%%capture
%%cython -a
import random
class Matrix(list):
@classmethod
def zeros(cls, shape):
n_rows, n_cols = shape
return cls([[0] * n_cols for i in range(n_rows)])
@classmethod
def random(cls, shape):
M, (n_rows, n_cols) = cls(), shape
for i in range(n_rows):
M.append([random.randint(-255, 255)
for j in range(n_cols)])
return M
def transpose(self):
n_rows, n_cols = self.shape
return self.__class__(zip(*self))
@property
def shape(self):
return ((0, 0) if not self else
(int(len(self)), int(len(self[0]))))
def cy_matrix_product(X, Y):
n_xrows, n_xcols = X.shape
n_yrows, n_ycols = Y.shape
Z = Matrix.zeros((n_xrows, n_ycols))
Yt = Y.transpose()
for i, Xi in enumerate(X):
for k, Ytk in enumerate(Yt):
Z[i][k] = sum(Xi[j] * Ytk[j] for j in range(n_xcols))
return Z
X = Matrix.random(shape)
Y = Matrix.random(shape)
%timeit -n100 cy_matrix_product(X, Y)
21.4 ms ± 1.36 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
The problem is that Cython cannot efficiently optimize work with lists that can contain elements of various types, so we rewrite matrix_product
using ndarray.
X = np.random.randint(-255, 255, size=shape)
Y = np.random.randint(-255, 255, size=shape)
%%capture
%%cython -a
import numpy as np
def cy_matrix_product(X, Y):
n_xrows, n_xcols = X.shape
n_yrows, n_ycols = Y.shape
Z = np.zeros((n_xrows, n_ycols), dtype=X.dtype)
for i in range(n_xrows):
for k in range(n_ycols):
for j in range(n_xcols):
Z[i, k] += X[i, j] * Y[j, k]
return Z
%timeit -n100 cy_matrix_product(X, Y)
176 ms ± 4.65 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
How so! It just got worse, with most of the code still using Python calls. Let's get rid of them by annotating the code with types.
%%capture
%%cython -a
import numpy as np
cimport numpy as np
def cy_matrix_product(np.ndarray X, np.ndarray Y):
cdef int n_xrows = X.shape[0]
cdef int n_xcols = X.shape[1]
cdef int n_yrows = Y.shape[0]
cdef int n_ycols = Y.shape[1]
cdef np.ndarray Z
Z = np.zeros((n_xrows, n_ycols), dtype=X.dtype)
for i in range(n_xrows):
for k in range(n_ycols):
for j in range(n_xcols):
Z[i, k] += X[i, j] * Y[j, k]
return Z
%timeit -n100 cy_matrix_product(X, Y)
173 ms ± 4 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
Unfortunately, typical annotations did not change the run time, because the body of the nested Cython itself could not optimize. Fatality-time: indicate the type of elements in ndarray.
%%capture
%%cython -a
import numpy as np
cimport numpy as np
def cy_matrix_product(np.ndarray[np.int64_t, ndim=2] X,
np.ndarray[np.int64_t, ndim=2] Y):
cdef int n_xrows = X.shape[0]
cdef int n_xcols = X.shape[1]
cdef int n_yrows = Y.shape[0]
cdef int n_ycols = Y.shape[1]
cdef np.ndarray[np.int64_t, ndim=2] Z = \
np.zeros((n_xrows, n_ycols), dtype=np.int64)
for i in range(n_xrows):
for k in range(n_ycols):
for j in range(n_xcols):
Z[i, k] += X[i, j] * Y[j, k]
return Z
%timeit -n100 cy_matrix_product(X, Y)
541 µs ± 5.14 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Let's try to go further and disable checks for going beyond the boundaries of the array and overflow of integer types.
%%capture
%%cython -a
import numpy as np
cimport cython
cimport numpy as np
@cython.boundscheck(False)
@cython.overflowcheck(False)
def cy_matrix_product(np.ndarray[np.int64_t, ndim=2] X,
np.ndarray[np.int64_t, ndim=2] Y):
cdef int n_xrows = X.shape[0]
cdef int n_xcols = X.shape[1]
cdef int n_yrows = Y.shape[0]
cdef int n_ycols = Y.shape[1]
cdef np.ndarray[np.int64_t, ndim=2] Z = \
np.zeros((n_xrows, n_ycols), dtype=np.int64)
for i in range(n_xrows):
for k in range(n_ycols):
for j in range(n_xcols):
Z[i, k] += X[i, j] * Y[j, k]
return Z
%timeit -n100 cy_matrix_product(X, Y)
226 µs ± 2.84 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Numpy
import numpy as np
X = np.random.randint(-255, 255, shape)
Y = np.random.randint(-255, 255, shape)
%timeit -n100 X.dot(Y)
151 µs ± 4.01 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit -n100 X*Y
6.02 µs ± 1.54 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Profit.